Machine Learning Essentials with Python and Spark

Machine Learning Essentials with Python and Spark

TTML6804

Intermediate

3 Days

Course Overview

Machine Learning Essentials with Python and Spark is a foundation-level, three-day hands-on course that teaches students core skills and concepts in modern ML at scale practices, leveraging Python and Spark.  This course is geared for attendees new to machine learning who need introductory level coverage of these topics, rather than a deep dive of the math and statistics behind Machine Learning.  Students will learn basic algorithms from scratch. For each machine learning concept, students will first learn about and discuss the foundations, its applicability and limitations, and then explore the implementation and use, reviewing and working with specific use cases.

Course Objectives

This program provides a structured, engaging learning experience for students to progressively attain the technical skills they require to engage in meaningful machine learning projects and activities, right after the training ends. Working in a hands-on learning environment, led by our Machine Learning expert instructor, students will learn about and explore:

  • Popular machine learning algorithms, their applicability, and limitations
  • Practical application of these methods in the Spark machine learning environment
  • Practical use cases and limitations of algorithms

Course Prerequisites

This course is geared for experienced, intermediate-skilled developers or others (with prior Python experience) intending to start using learning about and working with basic machine learning algorithms and concepts.  Attendees should be comfortable working with Python programming.  Students should also be able to navigate Linux command line, and who have basic knowledge of Linux editors (such as VI / nano) for editing code.

 

Pre-Requisites:  Students should have attended or have incoming skills equivalent to those in this course:

·        Strong basic Python Skills.  Attendees without Python background may view labs as follow along exercises or team with others to complete them. (NOTE: This course is also offered in R – please inquire for details)

·        Good foundational mathematics in Linear Algebra and Probability

·        Basic Linux skills, including familiarity with command-line options such as ls, cd, cp, and su

Course Agenda

  1. Machine Learning (ML) Overview
  • Machine Learning landscape
  • Machine Learning applications
  • Understanding ML algorithms & models

 

  1. Machine Learning in Python and Spark
  • Spark ML Overview
  • Introduction to Jupyter notebooks
  • Working with Jupyter + Python + Spark

 

  1. Machine Learning Concepts
  • Statistics Primer
  • Covariance, Correlation, Covariance Matrix
  • Errors, Residuals
  • Overfitting / Underfitting
  • Cross-validation, bootstrapping
  • Confusion Matrix
  • ROC curve, Area Under Curve (AUC)

 

  1. Feature Engineering (FE)
  • Preparing data for ML
  • Extracting features, enhancing data
  • Data cleanup
  • Visualizing Data
  • Lab: data cleanup
  • Lab: visualizing data

 

 

  1. Linear regression
  • Simple Linear Regression
  • Multiple Linear Regression
  • Running LR
  • Evaluating LR model performance
  • Use case: House price estimates

 

  1. Logistic Regression
  • Understanding Logistic Regression
  • Calculating Logistic Regression
  • Evaluating model performance
  • Use case: credit card application, college admissions

 

  1. Classification: SVM (Supervised Vector Machines)
  • SVM concepts and theory
  • SVM with kernel
  • Use case: Customer churn data

 

  1. Classification: Decision Trees & Random Forests
  • Theory behind trees
  • Classification and Regression Trees (CART)
  • Random Forest concepts
  • Use case: predicting loan defaults, estimating election contributions

 

  1. Classification: Naive Bayes
  • Theory
  • Use case: spam filtering

 

  1. Clustering (K-Means)
  • Theory behind K-Means
  • Running K-Means algorithm
  • Estimating the performance
  • Use case: grouping cars data, grouping shopping data

 

  1. Principal Component Analysis (PCA)
  • Understanding PCA concepts
  • PCA applications
  • Running a PCA algorithm
  • Evaluating results
  • Use case: analyzing retail shopping data

 

  1. Recommendations (Collaborative filtering)
  • Recommender systems overview
  • Collaborative Filtering concepts
  • Use case: movie recommendations, music recommendations

 

  1. Performance 
  • Best practices for scaling and optimizing Apache Spark
  • Memory caching
  • Testing and validation

 

Time Permitting: Capstone Project

  • Hands-on guided workshop utilizing skills learned throughout the course

Course Materials

Each student will receive a Student Guide with course notes, code samples, software tutorials, diagrams and related reference materials and links (as applicable). Our courses also include step by step hands-on lab instructions and and solutions, clearly illustrated for users to complete hands-on work in class, and to revisit to review or refresh skills at any time. Students will also receive the project files (or code, if applicable) and solutions required for the hands-on work.

Raise the bar for advancing technology skills

Attend a Class!

Live scheduled classes are listed below or browse our full course catalog anytime

Special Offers

We regulary offer discounts for individuals, groups and corporate teams. Contact us

Custom Team Training

Check out custom training solutions planned around your unique needs and skills.

EveryCourse Extras

Exclusive materials, ongoing support and a free live course refresh with every class.

Summer Savings!
Register today to receive *50% off all 2021 Public Classes*!  Check out our Current Offers for Individuals, Teams and Organizations to Learn for Less!

See our latest Offers and Promotions

Learn. Explore. Advance!

Extend your training investment! Recorded sessions, free re-sits and after course support included with Every Course
Trivera MiniCamps
Gain the skills you need with less time in the classroom with our short course, live-online hands-on events
Trivera QuickSkills: Free Courses and Webinars
Training on us! Keep your skills current with free live events, courses & webinars
Trivera AfterCourse: Coaching and Support
Expert level after-training support to help organizations put new training skills into practice on the job

The voices of our customers speak volumes

Special Offers
Limited Offer for most courses.

SAVE 50%

Learn More