Machine Learning & Deep Learning Essentials with Spark and TensorFlow

Explore Core Skills, Regression, Classification, Naïve Bayes, Spark, TensorFlow, Keras, Neural Networks & More

TTML5508

Intermediate

5 Days

Course Overview

Apache Spark, a significant component in the Hadoop Ecosystem, is a cluster computing engine used in Big Data. Building on top of the Hadoop YARN and HDFS ecosystem, offers order-of-magnitude faster processing for many in-memory computing tasks compared to Map/Reduce. It can be programmed in Java, Scala, Python, and R - the favorite languages of Data Scientists - along with SQL-based front ends.

The first part of the course teaches performing Machine Learning at Scale using the popular Apache Spark framework.  This course is intended for data scientists and software engineers, and assumes attendees have little or no previous experience with Machine Learning.  This course explores popular machine learning algorithms from the ground up.  Students will explore Apache Spark essentials, core machine learning concepts, regressions, classifications, clustering and more.

The abundance of data and affordable cloud scale has led to an explosion of interest in Deep Learning. Google has released an excellent library called TensorFlow to open-source, allowing state-of-the-art machine learning done at scale, complete with GPU-based acceleration.  Students will explore these skills in an active hands-on manner. The second part of the course introduces students to Deep Learning concepts and how TensorFlow implements them.

Course Objectives

This “skills-centric” course is about 50% hands-on lab and 50% lecture, with extensive practical exercises designed to reinforce fundamental skills, concepts and best practices taught throughout the course.  Throughout the program, working in a hands-on learning environment guided by our expert instructor, students will

  • Learn popular machine learning algorithms, their applicability, and limitations
  • Practice the application of these methods in the Spark machine learning environment
  • Learn practical use cases and limitations of algorithms
  • Will explore not just the related APIs, but will also learn the theory behind them
  • Work with real world datasets from Uber, Netflix, Walmart, Prosper, etc.

Need different skills or topics?  If your team requires different topics or tools, additional skills or custom approach, this course may be easily adjusted to accommodate.  We offer additional related Machine Learning, AI, Deep Learning, data science, programming (Python, R, Java, Scala etc.) and development courses which may be blended with this course for a track that best suits your learning objectives. Our team will collaborate with you to understand your needs and will target the course to focus on your specific learning objectives and goals.

Course Prerequisites

This is an intermediate level course, geared for Data Scientists, Data Analysts and Developers new to Machine Learning, Spark and TensorFlow.

Pre-Requisites:  Students should have attended or have incoming skills equivalent to those in this course:

  • Strong basic Python Skills.  Attendees without Python background may view labs as follow along exercises or team with others to complete them.
  • Good foundational mathematics in Linear Algebra and Probability
  • Basic Linux skills, including familiarity with command-line options such as ls, cd, cp, and su

Please see the Related Courses tab for specific Pre-Requisite courses, Related Courses that offer similar skills or topics, and next-step Learning Path recommendations.

Course Agenda

Please note that this list of topics is based on our standard course offering, evolved from typical industry uses and trends. We’ll work with you to tune this course and level of coverage to target the skills you need most. Topics, agenda and labs are subject to change, and may adjust during live delivery based on audience needs and skill-level.

Part 1: Introduction to Machine Learning

Machine Learning (ML) Overview

  • Machine Learning landscape
  • Machine Learning applications
  • Understanding ML algorithms & models

ML in Python and Spark

  • Spark ML Overview
  • Introduction to Jupyter notebooks
  • Lab: Working with Jupyter + Python + Spark
  • Lab: Spark ML utilities

Machine Learning Concepts

  • Statistics Primer
  • Covariance, Correlation, Covariance Matrix
  • Errors, Residuals
  • Overfitting / Underfitting
  • Cross-validation, bootstrapping
  • Confusion Matrix
  • ROC curve, Area Under Curve (AUC)
  • Lab: Basic stats

Feature Engineering (FE)

  • Preparing data for ML
  • Extracting features, enhancing data
  • Data cleanup
  • Visualizing Data
  • Lab: data cleanup
  • Lab: visualizing data

Linear Regression

  • Simple Linear Regression
  • Multiple Linear Regression
  • Running LR
  • Evaluating LR model performance
  • Lab
  • Use case: House price estimates

Logistic Regression

  • Understanding Logistic Regression
  • Calculating Logistic Regression
  • Evaluating model performance
  • Lab: Use case: credit card application, college admissions

Classification: SVM (Supervised Vector Machines)

  • SVM concepts and theory
  • SVM with kernel
  • Lab: Use case: Customer churn data

Classification: Decision Trees & Random Forests

  • Theory behind trees
  • Classification and Regression Trees (CART)
  • Random Forest concepts
  • Labs: Use case: predicting loan defaults, estimating election contributions

Classification: Naive Bayes

  • Theory
  • Lab
  • Use case: spam filtering

Clustering (K-Means)

  • Theory behind K-Means
  • Running K-Means algorithm
  • Estimating the performance
  • Lab: Use case: grouping cars data, grouping shopping data

Principal Component Analysis (PCA)

  • Understanding PCA concepts
  • PCA applications
  • Running a PCA algorithm
  • Evaluating results
  • Lab: Use case: analyzing retail shopping data

Recommendations (Collaborative filtering)

  • Recommender systems overview
  • Collaborative Filtering concepts
  • Lab: Use case: movie recommendations, music recommendations

Performance 

  • Best practices for scaling and optimizing Apache Spark
  • Memory caching
  • Testing and validation

Part Two: Introduction to Deep Learning with TensorFlow

Introducing TensorFlow

  • TensorFlow intro
  • TensorFlow Features
  • TensorFlow Versions
  • GPU and TPU scalability
  • Lab: Setting up and Running TensorFlow

The Tensor: The Basic Unit of TensorFlow

  • Introducing Tensors
  • TensorFlow Execution Model
  • Lab: Learning about Tensors

Single Layer Linear Perceptron Classifier with TensorFlow

  • Introducing Perceptrons
  • Linear Separability and Xor Problem
  • Activation Functions
  • Softmax output
  • Backpropagation, loss functions, and Gradient Descent
  • Lab: Single-Layer Perceptron in TensorFlow

Hidden Layers: Intro to Deep Learning

  • Hidden Layers as a solution to XOR problem
  • Distributed Training with TensorFlow
  • Vanishing Gradient Problem and ReLU
  • Loss Functions
  • Lab: Feedforward Neural Network Classifier in TensorFlow

High level TensorFlow: tf.learn

  • Using high level TensorFlow
  • Developing a model with tf.learn
  • Lab: Developing a tf.learn model

Convolutional Neural Networks in TensorFlow

  • Introducing CNNs
  • CNNs in TensorFlow
  • Lab : CNN apps

Introducing Keras

  • What is Keras?
  • Using Keras with a TensorFlow Backend
  • Lab: Example with a Keras

Recurrent Neural Networks in TensorFlow

  • Introducing RNNs
  • RNNs in TensorFlow
  • Lab: RNN

Long Short-Term Memory (LSTM) in TensorFlow

  • Introducing RNNs
  • RNNs in TensorFlow
  • Lab: RNN

Conclusion

  • Summarize features and advantages of TensorFlow
  • Summarize Deep Learning and How TensorFlow can help
  • Next steps

Course Materials

Each student will receive a Student Guide with course notes, code samples, setp-by-step written lab instructions, software tutorials, diagrams and related reference materials and links (as applicable). Students will also receive related (as applicable) project files, code files, data sets and solutions required for any hands-on work.

Lab Setup Made Simple.   All course labs and solutions, data sets, software, detailed courseware, lab guides and resources (as applicable) are provided for attendees in our easy access, no installation required, remote lab environment. Our tech team will help set up, test and verify lab access for each attendee prior to the course start date, ensuring a smooth start to class and successful hands-on course experience for all participants. 

Raise the bar for advancing technology skills

Attend a Class!

Live scheduled classes are listed below or browse our full course catalog anytime

Special Offers

We regulary offer discounts for individuals, groups and corporate teams. Contact us

Custom Team Training

Check out custom training solutions planned around your unique needs and skills.

EveryCourse Extras

Exclusive materials, ongoing support and a free live course refresh with every class.

Attend a Course

Please see the current upcoming available open enrollment course dates posted below. Please feel free to Register Online below, or call 844-475-4559 toll free to connect with our Registrar for assistance. If you need additional date options, please contact us for scheduling.

Course Title Days Date Time Price
Machine Learning & Deep Learning Essentials with Spark and TensorFlow 5 Days Nov 8 to Nov 12 10:00 AM to 06:00 PM EST $2,695.00 Enroll
Machine Learning & Deep Learning Essentials with Spark and TensorFlow 5 Days Dec 6 to Dec 10 10:00 AM to 06:00 PM EST $2,695.00 Enroll

Summer Savings!
Register today to receive *50% off all 2021 Public Classes*!  Check out our Current Offers for Individuals, Teams and Organizations to Learn for Less!

See our latest Offers and Promotions

Learn. Explore. Advance!

Extend your training investment! Recorded sessions, free re-sits and after course support included with Every Course
Trivera MiniCamps
Gain the skills you need with less time in the classroom with our short course, live-online hands-on events
Trivera QuickSkills: Free Courses and Webinars
Training on us! Keep your skills current with free live events, courses & webinars
Trivera AfterCourse: Coaching and Support
Expert level after-training support to help organizations put new training skills into practice on the job

The voices of our customers speak volumes

Special Offers
Limited Offer for most courses.

SAVE 50%

Learn More